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Interpretation of the colossal number of genetic variants identi-
fied from sequencing applications is one of the major bottlenecks
in clinical genetics, with the inference of the effect of amino acid-
substituting missense variations on protein structure and function
being especially challenging. Here we characterize the three-
dimensional (3D) amino acid positions affected in pathogenic and
population variants from 1,330 disease-associated genes using
over 14,000 experimentally solved human protein structures. By
measuring the statistical burden of variations (i.e., point muta-
tions) from all genes on 40 3D protein features, accounting for
the structural, chemical, and functional context of the variations’
positions, we identify features that are generally associated with
pathogenic and population missense variants. We then perform
the same amino acid-level analysis individually for 24 protein
functional classes, which reveals unique characteristics of the
positions of the altered amino acids: We observe up to 46%
divergence of the class-specific features from the general charac-
teristics obtained by the analysis on all genes, which is consistent
with the structural diversity of essential regions across differ-
ent protein classes. We demonstrate that the function-specific
3D features of the variants match the readouts of mutagenesis
experiments for BRCA1 and PTEN, and positively correlate with an
independent set of clinically interpreted pathogenic and benign
missense variants. Finally, we make our results available through
a web server to foster accessibility and downstream research. Our
findings represent a crucial step toward translational genetics,
from highlighting the impact of mutations on protein structure to
rationalizing the variants’ pathogenicity in terms of the perturbed
molecular mechanisms.

missense variant interpretation | protein structure and function | disease
variation effect | 3D mutational hotspot | machine learning

Genetic screening is increasingly applied in clinical practice,
especially for the diagnosis of rare monogenic diseases and

cancer, leading to the identification of a rapidly growing number
of genetic variations (1, 2). Most of these are missense vari-
ations, which cause an amino acid substitution upon a single
nucleotide change in the protein-coding region of the genome.
Detection of such missense variations by high-throughput DNA
sequencing is now relatively straightforward. Predicting their
association with disease from sequencing output alone, instead,
remains challenging because missense variations can be either
benign or pathogenic, and both types coexist in almost every
disease-associated gene (3). To discover how a missense variant
is implicated in a disease requires knowledge of the conse-

quence of the amino acid substitution (i.e., variation) on the
protein structure and function. A plethora of disease-associated
(“pathogenic”) and benign (“population”) variants has been
collected in multiple databases such as Online Mendelian Inher-
itance in Man (OMIM) (4), Human Gene Mutation Database
(HGMD) (5), ClinVar (6), Exome Aggregation Consortium
(ExAC) (3), and Genome Aggregation Database (gnomAD)
(7). These resources, along with an increasing amount of pro-
tein structure data available in the Protein Data Bank (PDB)
(8), now offer an unprecedented opportunity to characterize
pathogenic and benign missense variants in the context of protein
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structure–function relationships. Progress in this direction can
aid variant interpretation, inform experiments, and help accel-
erate personalized drug discovery.

Current in silico methods for variant pathogenicity predic-
tion employ a variety of machine learning algorithms, which are
trained on pathogenic and population variant data using many
features such as evolutionary information (“conserved sites”),
gene-level properties (e.g., “essentiality”), and specific amino
acid exchanges in protein sequences (9–12). Although the ability
to predict pathogenicity is improving (13, 14), the output scores
of the predictors do not advance our knowledge about the molec-
ular pathology of the associated disorder. Since a computational
“black box” model generates these scores, they are not biolog-
ically interpretable; that is, it is not possible to understand why
a particular missense variant is predicted to have a high or low
pathogenicity score or to establish what the molecular effect of
the variation will be.

Biological insights into the effect of pathogenic missense vari-
ants can reportedly be gained by analyzing the relationship
between point mutations and protein structures (15–18). Several
studies have shown that the damaging consequences of missense
variations are linked to the properties (19–21) and localization
of the altered amino acid residues in the protein structure (22–
26). Subsequently, resources have been developed to predict
and report the impact of amino acid substitutions on protein
structures: missense3D (27) predicts the changes in structure
and free energy upon mutations, which is applicable to both
experimental structures and homology models of the structures;
SuSPect (28) predicts the association between missense vari-
ations and their phenotypic impact leveraging information of
protein–protein interaction networks; VarSite (29) presents a
range of features associated with the variants (related diseases,
structural annotations, pathways, tissue specificity, etc.).

The variant interpretation guidelines proposed by American
College of Medical Genetics and Genomics (ACMG) list the
presence of an amino acid substitution in mutational hotspots
(PM1 criterion (30), i.e., sites displaying frequent occurrence of
pathogenic mutations and depleted in benign variants) as mod-
erate evidence for pathogenicity. Such hotspots can be located in
any “functional domain,” namely, a region of the protein known
to be critical for function, but also in “less well-characterized
regions.” Indeed, because proteins are molecules characterized
by a dense network of both intramolecular and intermolec-
ular interactions, amino acid substitutions occurring in many
different positions can have far-reaching consequences on pro-
tein structure and stability (31). Further, proteins performing
a similar function often have conserved structural regions that
are intolerant to substitution, and such regions vary for pro-
teins that carry out different functions (32, 33). For example,
the “voltage-sensing” helical regions of the ion transporters
(e.g., sodium channel family) are predominantly enriched with
pathogenic missense variations, causing several forms of neu-
rological channelopathies (34–36). Similarly, in certain enzymes
(kinase, phosphatase, etc.), mutations of distinctive catalytic and
regulatory sites in the structure are shown to be associated with
diverse phenotypes (37, 38).

With this study, we sought to bridge the gap between genetic
variation data and molecular phenotype through the analysis of
features of single amino acids in the context of the native three-
dimensional (3D) protein structure (“3D sites”). The rationale
behind this approach is that features of the 3D sites (“3D fea-
tures”) that are more frequently mutated in pathogenic variants
than in benign variants (“3D mutational hotspot”) are likely to
be important for protein fitness, and therefore could contribute
to explaining the molecular determinants of pathogenicity. Con-
comitantly, we speculate that knowledge of specific features
of 3D mutational hotspots for individual protein functional
classes (e.g., kinases, transporters, cytoskeletal proteins) can

considerably help with formulating informed hypotheses in the
interpretation of variant pathogenicity.

Results
To systematically identify the 3D features associated with
“pathogenic” and “population” missense variants, we analyzed
the 3D sites affected in 32, 923 pathogenic (ClinVar and HGMD
databases) and 164, 915 general population variants (gnomAD
database) from 1, 330 disease-associated genes (Disease-
Associated Genes with Structure [DAGS1330] set, Dataset S1;
see Materials and Methods for details) using 14, 270 experimen-
tally solved human protein structures. We investigated a set of
40 3D features grouped in seven main feature categories report-
ing on the affected amino acid’s physicochemical properties (e.g.,
aromatic vs. charged or polar), structural context (e.g., α-helix,
β-sheet, participation in hydrogen bonds), and their role in pro-
tein activity (i.e., “functional features,” such as their involvement
in an enzyme’s active site, ligand binding pocket, cellular signal-
ing, etc.). A brief outline of the study design and objectives is
shown in Fig 1.

Characteristic 3D Features of Pathogenic and Population Missense
Variants of 1,330 Genes. By statistical association analysis of all
variants from 1, 330 genes together, we identified 18 out of 40
(45%) features that were significantly associated with pathogenic
variants, while 14 out of 40 (35%) features showed significant
association with population variants (Fig. 2). The remaining
eight protein features (20%) showed no significant association
with any variant type. In the rest of the paper, we will only
report and discuss statistically significant results (with a corrected
p value or “q” < 0.05; see Materials and Methods for details).

Disulfide bonds formed between covalently linked cysteines
of two different proteins in a complex were found to have the
highest enrichment of pathogenic missense variations among all
investigated 3D features (19-fold; Fig. 2). The next highest bur-
den for pathogenic variations was observed in the residues that
were within 10 Å of posttranslational modification (PTM) sites
in the structure [sites that undergo enzymatic addition of small
molecules to certain amino acids after translation (45)], like
SUMOylation (OR = 5.8) and O-linked N-acetylglucosamine
(O.GlcNAc) (OR = 5.6; Fig. 2) sites. Instead, in population
variants, the solvent-exposed residues in protein structures were
observed to be the most affected 3D sites (OR = 0.4; Fig. 2).

Interestingly, the group of amino acids (Cys/C, Gly/G, and
Pro/P) with peculiar characteristics (categorized as “special”
in terms of their physicochemical properties in this study;
Fig. 2), showed the highest association with pathogenic variations
(twofold enrichment). Of these, cysteine (Cys) residues were
found fourfold enriched in pathogenic variations (SI Appendix,
Fig. S1A), consistent with the cogent association between vari-
ant pathogenicity and perturbation of disulfide bonds, as a
Cys mutation will eliminate that bond. The three aromatic
amino acids (Phe/F, Trp/W, Tyr/Y), both as a group (OR =
1.6; Fig. 2) and individually (SI Appendix, Fig. S1A), were
found enriched for pathogenic mutations. Among them, tryp-
tophan (Trp) residues, which are often involved in key molec-
ular interactions (e.g., hydrophobic and cation–π interactions)
(46) showed the strongest association (OR = 3.3; SI Appendix,
Fig. S1A) with pathogenic variants.

Additionally, out of the six “functional features” indicat-
ing sites or regions of interest in proteins [as annotated in
UniProt (43)], three were observed to be over threefold enriched
in pathogenic variants, namely the “modular domain,” “mod-
ified residue,” and “functional/binding region” (Fig. 2). We
also performed supplemental analyses on all of the 25 indi-
vidual features that were initially collected from UniProt, then
grouped (see SI Appendix, Feature Set Mining and Annotation for
details), and analyzed as six categories in Fig. 2. Results of these
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Protein structure to 
sequence mapping

Protein feature annotation Protein class annotation

Statistical (burden) analysis:
Two-tailed Fisher’s exact test with pathogenic and population variations on protein features

Calcium-binding protein Lyase
Chaperone Membrane traffic protein

Cell adhesion molecule Nucleic acid binding protein
Cell junction protein Oxidoreductase
Cytoskeletal protein Phosphatase
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Isomerase Transfer/carrier protein
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Ligase Transporter

Disease Associated Genes with Structure (DAGS1330) setse

1,330 genes
164,915 population variations (gnomAD)

32,923 pathogenic variations (ClinVar and HGMD)

14,270 protein 3D structures

Step 1
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PANTHER

5,850 human genes

Protein sequence to 
variant annotation

pathogenic missense 
variations

population missense 
variations

Protein features (structural, physicochemical and functional) of pathogenic and population 
missense variation positions in the 3D structure

Disease-related vulnerable protein features of the 3D mutational hotspots for twenty-four 
functional classes

Filter: genes with both population and pathogenic variations mappable on structures

DSSP: 3-class secondary structure

DSSP: 8-class secondary structure
DSSP: Residue exposure levels
Physicochemical property of amino acid
PDBsum: Protein-protein interactions
PhosphoSitePlus: Post-translational modification
UniProt: Functional features

Step 2 Step 3

Step 4

gnomAD
genome aggregation database

HGMD ClinVar

PDB
Protein Data Bank

Ensembl VeP

EMBL-EBI SIFTS

UniProt

Fig. 1. Illustration of the study design and objectives. Step 1: Dataset preparation and missense variant to protein structure mapping. Experimentally
solved human protein structures are collected from the PDB (8) (in January 2018) and mapped to UniProt-defined canonical protein sequences using the SIFTS
database (39). The missense variants are assembled from three databases: general population variants from gnomAD (public release 2.0.2), disease mutations
from HGMD (professional release 2018.4 and 2019.2), and pathogenic and likely pathogenic variants from ClinVar (February 2018 and 2019 releases). Finally,
the analysis is restricted to the 1, 330 genes (DAGS1330 set) for which both population (n = 164, 915) and pathogenic (n = 32, 923) variations could be
mapped on protein structures (n = 14, 270). Step 2: Protein feature annotation. Forty protein features from seven main feature categories for the amino
acid residues are collected from multiple databases, that is, DSSP (40) (version 3.0.2), PDBsum (41) (January 2018 update), PhosphoSitePlus (42) (February
2018 update), and UniProt (43) (release 2018 02). Step 3: Protein class annotation. The protein functional class annotations for genes are obtained from
PANTHER (44) (release 13.1), Ensembl (version 93), and UniProt (43) (release 2018 02) databases. Step 4: Statistical analysis. Two-sided Fisher’s exact test is
performed to identify the protein features that are significantly associated with pathogenic or population missense variations (after Bonferroni correction).
The analysis is performed taking all variants in the DAGS1330 gene set, and then individually for groups of genes encoding proteins in 24 functional classes,
to identify features of 3D mutational hotspots that are shared across all proteins as well as those that are unique to proteins performing a specific function.

fine-grained analyses revealed additional associations for
pathogenic variants (output presented and discussed in full in SI
Appendix, Fig. S1B).

Characteristic 3D Features of Pathogenic and Population Missense
Variants for Protein Functional Classes. Protein structures present
evidence for conserved regions that are relevant for a specific
function, and such essential regions vary substantially in differ-
ent protein functional classes (44, 47). We thus anticipate that
features of 3D mutational hotspots in proteins performing differ-
ent functions can differ from the general characteristics obtained
by joint analysis of 1, 330 genes. To identify such shared and/or
unique function-specific 3D features, we quantified the burden of
pathogenic variations compared to the population variations in
40 3D features separately for groups of genes encoding for simi-
lar protein functions (see Dataset S2 for protein class definition
and annotated genes). The identified characteristic 3D features

of pathogenic and population variants for all protein classes are
listed in Dataset S3, and the output is summarized as a heatmap
of enrichment values (odds ratio, OR) in Fig. 3A. The detailed
Fisher’s exact test outputs for protein classes (OR, 95% CI and
p values) are also presented in SI Appendix, Figs. S2–S8 for seven
main feature categories.

Our class-specific analysis captured the 3D features that are
susceptible to pathogenic mutations across all protein classes,
indicating a crucial location for protein fitness. The residue expo-
sure level (defined by the relative solvent accessible area [RSA]
of that amino acid) is one such 3D feature type (Fig. 3A). Core
(RSA < 5%) and buried (5% ≤ RSA < 25%) residues, which
are usually embedded in a tight interaction network and are fun-
damental for protein stability, were found to be 3D hotspots
of pathogenic mutations in all protein classes (Fig. 3A and SI
Appendix, Fig. S4 A and B). Conversely, the residues relatively
exposed to solvent (“medium-buried,” “medium-exposed,” and

Iqbal et al. PNAS | November 10, 2020 | vol. 117 | no. 45 | 28203
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Fig. 2. Association of pathogenic and population missense variations with 40 3D features (a combination of structural, physicochemical, and functional
features of amino acids on protein structure) for 1,330 disease-associated genes (DAGS1330 set). The plot shows the results of two-sided Fisher’s exact
tests of association between 32,923 pathogenic and 164,915 population amino acid variations with the features. Circles show the OR and are labeled
with the q values (the corrected p values; see Materials and Methods), showing the significance of the association (a value of 1.0e-297 should be read
as <1.0e-297, indicating the maximum significance), and the horizontal bars show the 95% CI. The OR > 1 and OR < 1, along with q < 0.05, indicate that
the corresponding feature (y axis) is enriched in pathogenic (red circle) and population (blue circle) variants, respectively. The vertical dashed line at OR = 1
indicates no association between a variant type (pathogenic or population) and a feature. To facilitate the visualization, minimum and maximum values of
OR along the x axis are set to 0.2 and 20.0, respectively. For nonsignificant association (q ≥ 0.05), the circle, CI bar, and feature names are gray.

“exposed”; Fig. 3A) were found to be enriched with population
variations in the majority of protein classes (SI Appendix,
Fig. S4 C–E). Among the groups of amino acids, substitutions
of aliphatic and neutral amino acids were found more likely to
be tolerated in the general population (Fig. 3A and SI Appendix,
Fig. S5 B and G) whereas mutations of aromatic and “special”

amino acids were, on average, more pathogenic (Fig. 3A and SI
Appendix Fig. S5 C and H) for all protein classes. Finally, the
protein functional domain [according to the annotation avail-
able in UniProt (43)] was found to be a uniform hotspot of
pathogenic mutations for all protein classes (Fig. 3A and SI
Appendix, Fig. S8D).

28204 | www.pnas.org/cgi/doi/10.1073/pnas.2002660117 Iqbal et al.
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A
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Fig. 3. Some features of 3D mutational hotspots
are conserved across different protein functional
classes, whereas others are unique to specific classes.
(A) Heatmap of ORs found from the burden anal-
yses (two-sided Fisher’s exact test) on 40 3D fea-
tures with pathogenic and population variants from
all 1,330 disease-associated genes (full DAGS1330
dataset) and for subsets of genes grouped into 24
protein classes based on their molecular functions.
To facilitate the visualization, minimum and maxi-
mum values of OR are set to 0.05 and 20.0, respec-
tively. The red and the blue color gradients repre-
sent different degrees of association to pathogenic
(1.0 < OR ≤ 20.0 and q < 0.05) and population
(0.05 ≤ OR < 1.0 and q < 0.05) variants; darker
color indicates stronger association. The gray cells
in the heatmap represent features that are not sig-
nificantly associated (q ≥ 0.05) with any variation
type. Thus, the rows with only red or blue cells
show the characteristic features of pathogenic or
population variations that are consistent or con-
served across all of the protein classes. In contrast,
the rows with both red and blue cells indicate pro-
tein class-specific diverging features. (B) Scatter plot
showing the correlation between the burden of
pathogenic variations on different features for all
genes along the x axis (ORDAGS1330) and for kinase
protein class along the y axis (ORKinase). Each circle
represents a protein feature (indicated by an arrow),
and has a different color according to the seven
main feature categories. The diagonal line repre-
sents the agreement between the burden values
found for all genes and those for kinases. The fea-
tures above the diagonal line and to the left of the
vertical line are enriched with pathogenic variations
in kinases (hydrogen bond and salt bridge interac-
tion sites), but are depleted of pathogenic variations
in the full DAGS1330 set. The features above the
diagonal line and to the right of the vertical line
have an elevated burden of pathogenic variations
in kinases (y axis), indicating that these features
are more intolerant to substitutions for this protein
class compared to the general trend for all proteins
(x axis). In contrast, the features below the diago-
nal line and the horizontal line are enriched with
pathogenic variations in the DAGS1330 set (disulfide
bond and O.GlcNAc), but are depleted of pathogenic
variations in kinases.

Alongside the above described shared features, in numerous
cases, we instead found marked differences between the 3D
features of mutational hotspots of a specific protein class and
those obtained from the joint analysis of the full DAGS1330
set (blue for those associated to population variants and red
for pathogenic variants in Fig. 3A). For instance, from the all-
gene analysis, we observed that pathogenic variations are more
enriched in β-sheets (OR = 1.2, q = 2.4e-36) than in α-helices
(OR = 0.9, q = 3.4e-01; Fig. 2), but the class-specific analy-
sis highlighted significant enrichment of pathogenic mutations
in α-helices for five protein classes (Fig. 3A and SI Appendix
Fig. S3D): cell junction proteins (OR = 2.9), transcription factors
(OR = 1.4), nucleic acid binding proteins (OR = 1.3), trans-
porters (OR = 1.3), and kinases (OR = 1.2) (see Discussion
for further details). A particularly informative example is that
of kinases (Fig. 3B). Pathogenic variations for these enzymes

were found to largely substitute the residues forming salt bridge
interactions (ORKinase = 2.3 vs. ORDAGS1330 = 0.5) and hydro-
gen bonds (ORKinase = 1.6 vs. ORDAGS1330 = 0.8), whereas no
association was observed with disulfide bonds, contrary to the
trend found by the joint analysis on all genes (ORKinase = 0 vs.
ORDAGS1330 = 19.2; Fig. 3B). In addition to such a diverging
pattern, for some features in kinases, we noticed an elevated
burden of pathogenic mutations compared to the general trend
for all proteins, indicating that these 3D sites are particularly
important for the function of kinases. Examples of these features
include SUMOYlation sites (ORKinase = 18.1 vs. ORDAGS1330 =
5.6; Fig. 3B), modular domain residues (ORKinase = 4.4 vs.
ORDAGS1330 = 3.4; Fig. 3B), and functional sites (ORKinase = 3.5
vs. ORDAGS1330 = 1.9; Fig. 3B). Similar results for other protein
classes (SI Appendix, Table S1 and Figs. S2–S8) show that fea-
tures of 3D mutational hotspots in proteins performing a specific
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function can substantially differ from the general trend, confirm-
ing the importance of our function-specific characterization of
missense variants.

Validation of 3D Features Associated with Pathogenic and Population
Missense Variants on an Independent Set of Variants. Having char-
acterized the pathogenic and population missense variants using
our set of 3D features (Figs. 2 and 3A and Dataset S3), we then
carried out a comparison with an independent set of variants
(see Materials and Methods for the preparation of the valida-
tion dataset) to assess how well we could recapitulate known
pathogenic mutations and the potential of our identified features
for helping with clinical interpretation of missense variants.

In order to quantify how deleterious an amino acid substitu-
tion is, we derived a pathogenic 3D feature index (P3DFi) per
residue based on the difference between the pathogenic and pop-
ulation variant-associated 3D features of the reference (altered)
amino acid (see details in Materials and Methods). We expect
that the residues located in vulnerable 3D sites will have a higher
number of pathogenic variant-associated features (P3DFi < 0).
Conversely, residues substituted in benign variants are expected
to have a greater number of population variant-associated fea-
tures (P3DFi < 0). Thus, we calculated the P3DFi values for
amino acids affected by 17, 983 pathogenic and 4, 712 benign
missense variants of 1, 286 genes. We then binned the variants
based on their P3DFi values (from less than −2 to greater than
2), and, as expected, the pathogenic and benign variants showed
opposite distributions (Mann–Whitney U test or Wilcoxon test of
significance, p < 2.2e-06; Fig. 4) across different P3DFiDAGS1330
values, with P3DFi computed based on the 3D features associ-
ated with the pathogenic and population variants of all 1,330
genes. Note that the most positive (P3DFi > 2) and negative
(P3DFi < −2) values represent the 3D sites with highest and

11.3%
1.4%

24.0%
9.6%

10.1%
21.0%

8.1%
15.9%

2.2%
5.4%

14.3%
19.7%

P3DFiDAGS1330

Higher 3D features 
associated to pathogenic

variants

Higher 3D features 
associated to population
variants

27.0%
30.0%

Mann–Whiteney U test  
or Wilcoxon text, 
p < 2.2e-16

Benign
Pathogenic

< −2 = −2 = −1 = 0 = 1 = 2 > 2
0

2000

4000

6000

Fig. 4. Distribution of pathogenic 3D feature index (P3DFiDAGS1330) val-
ues in an independent set of 22,695 variants (17,983 pathogenic and 4,712
benign). The plot shows the count of pathogenic and benign variants (y axis)
in different P3DFiDAGS1330 bins (x axis) for 1,286 genes of all protein classes.
The bin labels report the fraction of pathogenic and benign variants in
each bin out of the total pathogenic and benign variants. In the plot, the
pathogenic and benign variants show opposing distribution trends in the
positive and negative P3DFi values (Mann–Whitney U test or Wilcoxon test
of significance, p < 2.2e-06).

lowest difference between pathogenic and population variant-
associated 3D features identified in this study (Figs. 2 and 3A).
Although a relatively small fraction of the total pathogenic and
benign variants were in the highest and lowest index range, about
90% (967 out of 1, 070) of all variants in the highest index range
(P3DFiDAGS1330 > 2; Fig. 4) are pathogenic, and 68% (532 out of
779) of all variants in the lowest range (P3DFiDAGS1330 < −2) are
benign. We further compared this high-confidence classification
of variants using P3DFi values with three state-of-the-art mis-
sense variant pathogenicity predictors, SIFT (11), PolyPhen2 (9),
and CADD (48) (SI Appendix, Table S3). Both P3DFiDAGS1330
and P3DFiProtein class (see Materials and Methods for details) per-
formed comparably with these existing methods. Importantly,
P3DFiProtein class showed a better accuracy and precision than that
of the P3DFiDAGS1330.

However, it is worth noting that, unlike the other predic-
tion scores, P3DFi values were not generated by a learning
model that is trained on a set of features to classify pathogenic
and benign variants. Instead, the P3DFi is purposely designed
to characterize 3D mutational hotspots. We hypothesize that
P3DFi values can serve as an orthogonal dimension in the variant
pathogenicity prediction (SI Appendix, Fig. S9) with respect to
the commonly used determinants employed by the existing meth-
ods. To test our hypothesis, we developed three ensemble models
using the “Random forest” classifier (49) (see Materials and
Methods for details): Two models were trained separately with
the P3DFiDAGS1330 and P3DFiProtein class values in addition to the
scores from SIFT (11), PolyPhen2 (9), and CADD (48), and the
third model was trained without any P3DFi values (Table 1). All
three models were trained using the variants in the DAGS1330
dataset, and the performances were evaluated on the full val-
idation dataset. The ensemble model including P3DFiDAGS1330
values in addition to the other prediction scores performed
competitively with the one without any P3DFi and with the
individual methods in terms of the balanced performance mea-
sured by the Matthews correlation coefficient (MCC) (Table 1),
highlighting that P3DFi indeed carries valuable information
for effectively determining variants’ pathogenicity. CADD score
classified the variants with the highest true positive rate (∼90%),
which, however, came at a cost of about 42% false positive
rate. PolyPhen2, of the three independent predictors, showed
the highest balanced accuracy (∼79%). For comparison, the
ensemble model with P3DFiProtein class scored the best balanced
accuracy (∼82%), MCC (∼54%) (Table 1), and the highest area
under the receiver operating characteristic (ROC) curve (82.4%)
out of all six methods (Fig. 5), including the ensemble model with
P3DFiDAGS1330.

Protein 3D Features Can Capture Missense Variations Leading to
Protein Dysfunction. Unlike in silico variant pathogenicity predic-
tion scores, our analysis of 3D features can often provide addi-
tional and biologically interpretable information to rationalize the
molecular effect of the variation on the protein. Here, we com-
pare our feature-based characterization of 3D sites with the effect
of amino acid substitutions obtained by functional assays for the
enzyme PTEN and the DNA binding protein BRCA1 (Fig. 6).

We collected the saturation genome editing readouts for
amino acid substitutions in the tumor suppressor gene BRCA1
(13 exons in particular, encoding the RING and BRCT
domains) from the literature (50). Subsequently, we quan-
tified the P3DFiDAGS1330 and P3DFiNucleic acid binding for 326
residues in these two domains. While both the all-protein-
based and function-specific P3DFi showed significant correla-
tion (p = 3.9e-07 and 4.3e-10; Fig. 6) with the mutagenesis
data, the P3DFiNucleic acid binding was 21% more correlated than
the P3DFiDAGS1330. Notably, most of the residues with loss-of-
function missense mutations (67%, 165 out of 248) annotated by
the mutational screening also had a positive P3DFiNucleic acid binding
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Table 1. Comparison of the ensemble models using P3DFi (this work), SIFT (11), PolyPhen2 (HVAR) (9), and CADD (48) scores to the
ensemble model without P3DFi values, and to the other individual scores

Recall/ Selectivity/
sensitivity/ specificity/

true positive true negative Balanced Fallout/false Miss rate/false
Method rate rate accuracy MCC F1 score Precision positive rate negative rate

Random forest * (P3DFiProtein class, 0.74 0.91 0.82 0.54 0.84 0.97 0.09 0.26
SIFT, PolyPhen2, CADD)

Random forest * (P3DFiDAGS1330, 0.72 0.88 0.80 0.50 0.82 0.96 0.12 0.28
SIFT, PolyPhen2, CADD)

Random forest * (SIFT, 0.71 0.89 0.80 0.49 0.82 0.96 0.11 0.29
PolyPhen2, CADD)

SIFT (11) 0.84 0.68 0.76 0.48 0.87 0.91 0.32 0.16
PolyPhen2 (9) 0.82 0.75 0.79 0.51 0.87 0.93 0.25 0.18
CADD (48) 0.90 0.58 0.74 0.48 0.89 0.89 0.42 0.10

The best score values are boldfaced. The performances are evaluated on 22,362 variants (17,707 pathogenic and 4,655 benign) from the validation set
for which all of the scores were available. The training and test datasets are reported in Datasets S4 and S5, respectively, together with the scores used to
develop all models and their outputs.
*Random forest ensemble model was developed using 2,000 decision tree classifiers (see details in Materials and Methods).

value, agreeing with the P3DFi based classification of the con-
sequence of the mutations (i.e., deleterious). Similarly, we col-
lected the fitness scores for all PTEN residues derived using
saturation mutagenesis experiments to annotate the loss-of-
function and neutral missense variations (51). P3DFiDAGS1330
and P3DFiPhosphatase were computed per amino acid: Again,
P3DFiPhosphatase showed a higher correlation (r2 = 59%, p =
1.6e-15; Fig. 6) with the score quantifying the lipid phosphatase
activity of PTEN than that of the P3DFiDAGS1330 (r2 = 38%, p >
2.2e-16). In summary, more than 87% of the tested missense vari-
ations (768 out of 876) leading to reduced protein activity had
positive P3DFiPhosphatase values.

Importantly, in addition to the quantitative index P3DFi,
MIssense variant to protein StruCture Analysis web SuiTe [MIS-
CAST (52); http://miscast.broadinstitute.org/] shows the struc-
tural, functional, and physicochemical properties of the mutated
amino acid; these properties can help in generating intuitive
hypotheses about the reason for protein dysfunction caused
by the mutation, as illustrated by the following example. The
phenylalanine (Phe/F) at position 1704 (F1704) of BRCA1 in
Fig. 7A is highlighted as a magenta sphere along with the known
pathogenic (ClinVar and HGMD) and population (gnomAD)
variation positions rendered with red and blue spheres, respec-
tively. Interestingly, ClinVar lists two missense variations of
F1704 (F1704Y and F1704L), and both are of uncertain signif-
icance (VUS). The 3D features of F1704 (Fig. 7B) show that,
besides being part of the BRCT (BRCA1 C-terminal) protein
domain, the F1704 amino acid residue is located in the protein
core with 0 Å2 RSA and in close proximity to a phosphorylation
site (distance in sequence = 4 amino acids, distance in structure
= 6.8 Å). Our results showed that residue exposure, substitution
of aromatic residues, and close proximity of the altered 3D site
to a phosphorylation site are features strongly associated with
pathogenicity in nucleic acid binding proteins (Fig. 7C). Thus,
mutation of F1704 could lead to structural defects by improper
packing of the core and/or conformational changes near the
phosphorylation site (Fig. 7C; positive P3DFi > 0 indicates a 3D
mutational hotspot that is intolerant to substitution). Strikingly,
all possible substitutions of Phe/F at position 1704 of BRCA1
have indeed been found to lead to loss of function in muta-
genesis experiments (50), agreeing with our 3D features based
output.

Discussion
A large number of disease-associated missense variants is cur-
rently available in publicly accessible databases. However, the

vast majority of them (about 75% of all clinically derived
missense variants in ClinVar, October 2019 release) remain
of uncertain significance (6), which is a major bottleneck in
translational and clinical genetics.

An array of in silico tools are currently available that aid in the
interpretation of sequence variants by providing a pathogenicity
prediction score, generated using different classification algo-
rithms, training cohorts, and features (30, 53). Some of the most
commonly used tools are PolyPhen2 (9), SIFT (11), CADD (48),
etc. While these variant pathogenicity prediction tools can clas-
sify pathogenic from benign variants with reasonable accuracy
(65 to 80%) (54), they do not provide the user with the 3D struc-
tural context of the variation location, which could help explicate
the functional impact of the variant. In fact, broader use of
laboratory-based functional assays is still largely advocated for
reliable inspection of the effect of missense variations on pro-
tein function (30, 55, 56). However, experimental approaches
are not easily applicable or scalable, and require time, special-
ized skill sets, and equipment that are not widespread in the
biomedical field.

Fig. 5. Comparison of the receiver operating characteristic (ROC) curves.
The curves are drawn using the scores generated by six methods (Table 1) in
predicting 22,362 variants (17,983 pathogenic and 4,655 benign). The plot is
further labeled with the area under the curve (AUC) values. The “Random
forest” ensemble model trained on P3DFiProtein class (derived in this study),
SIFT (11), PolyPhen2 (9), and CADD (48) scores provided the best AUC value
of 0.824 (boldfaced).
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Fig. 6. Comparison of the saturation mutagenesis screening readouts
and P3DFi values (derived in this study). The figure shows the output of
Pearson’s product moment correlation tests between the mean fitness scores
from the mutagenesis experiment per amino acid (to all possible substi-
tutions) and both the P3DFiDAGS1330 and P3DFiProtein class values for two
proteins: BRCA1 (50) and PTEN (51). The diamonds show the estimated
correlation values (Pearson r2). Vertical bars show the 95% CIs and are
labeled with the significance (p values) of the test result. The correla-
tion between experimental outputs measuring the functional consequence
of mutations and the protein function-specific P3DFi (P3DFiPhosphatase for
PTEN and P3DFiNucleic acid binding for BRCA1) are higher than that of the
P3DFiDAGS1330 values for both proteins. These results illustrate that 3D fea-
tures specific to the protein function can provide a substantial advantage in
correctly interpreting the consequences of missense variations.

In an effort to tackle this problem, and considering that
the function of a protein is intimately linked to its structure,
we hypothesized that characterizing the amino acid positions
affected by pathogenic and benign missense variations in the con-
text of the native protein structure can effectively decipher the
molecular effects of a variant. Current studies analyzing missense
variants in protein structures are mostly focused on the field of
cancer research (22–24). Here we present a large-scale associa-
tion study of germline pathogenic and population variations (SI
Appendix, Fig. S10) with their respective 3D features for 1, 330
genes, of which 1, 077 are implicated in noncancer Mendelian
disorders (4), using over 14, 000 experimentally solved protein
structures.

The only structure-related criterion currently recognized by
the ACMG as a determinant of variant pathogenicity is the pres-
ence of missense variations in known functionally critical protein
domains (30, 57). Our work also confirms the utility of these
domains in variant pathogenicity assessment (over threefold
enrichment of pathogenic variants in “modular domain”; Fig. 2).
However, it is worth noting that 28% of the pathogenic missense
variants in our dataset alter amino acids outside any domain cur-
rently annotated in UniProt (58), indicating that the complex
interplay of factors governing protein stability and functional-
ity cannot be reduced to domains alone. Indeed, we identified
disulfide bonds and two PTM sites to have higher enrich-
ment of pathogenic variations than that of “modular domains”
(Fig. 2), in agreement with previous studies showing the link

between pathogenic variants and these structure-based features
(21) at a relatively small scale (i.e., variants from 1000 Genomes
Project).

Several studies have discretely analyzed different structure-
related features of amino acid positions (16, 59, 60) affected
in missense variants. In contrast, we investigated a broad set of
features, reporting on amino acids’ structural context as well as
their chemical and functional properties. An example illustrat-
ing the benefit of our characterization using a more detailed
set of features, for example, the eight-class description of sec-
ondary structures compared to the classical three classes (20, 61),
is the identification of π-helical residues as a feature significantly
associated with pathogenic variants (Fig. 2 and SI Appendix,
Fig. S3E). Although relatively rare (about 0.6% of all residues in
the 1,330 proteins analyzed in this study), 90 genes in our dataset
had at least one disease-associated mutation changing a π-helical
residue. These structural motifs are conserved and are known
to contribute to the stabilization of specific binding sites within
proteins (62, 63), so it is plausible that alteration of π-helices
would be associated with serious perturbation of specific protein
functions.

To the best of our knowledge, no previous studies have statis-
tically assessed the properties of missense variants separately for
genes encoding different protein functions, especially including
structural information. Results obtained from analyzing variants
from all 1, 330 genes together revealed 3D features that are crit-
ical, in general, for protein fitness. These general characteristics
of 3D hotspots that we (Fig. 2) and others (20–22, 64) have
identified are necessary for making an educated guess about
the effect of missense variations in any protein without know-
ing their function. But the insights gathered from these results
are inherently limited because of the sheer diversity of proteins’
structural and functional properties. We thus delved deeper into
the data and performed the same characterization of 3D muta-
tional hotspots individually for 24 protein classes, which allowed
us to identify many additional functionally relevant associations
(Dataset S3 and Fig. 3A). Our results captured 3D features that
have 1) a similar type and level of association (pathogenic or
population, weak or strong) for every functional class (such as
residues exposure level to solvent; Fig. 3A) and 2) an opposite
or extremely elevated association for one/few classes compared
to the general trend (i.e., function-specific characteristics). For
example, results in Fig. 2 alone (from the all gene-based analy-
sis) suggest that a variant where a 3D site involved in a hydrogen
bond is mutated is likely a nonpathogenic variant. However, our
function-specific analysis revealed four protein classes (trans-
porter, protease, kinase, and nucleic acid binding proteins), for
which residues forming interprotein hydrogen bonds are indeed
associated with pathogenic variants (Fig. 3A and SI Appendix,
Fig. S6C), similarly to what had been previously reported for a set
of proteins and protein complexes (18). Conversely, amino acids
near phosphorylation sites were found enriched for pathogenic
variants in our joint analysis output (Fig. 3A, first column),
recapitulating the findings of previous studies (59, 65, 66). But
we observed an opposite pattern for hydrolases and cell adhe-
sion molecules with frequent population variants near (<10 Å)
phosphorylation sites (Fig. 3A and SI Appendix, Fig. S7D),
further underlining the importance of our function-based
analysis.

In addition to identifying function-specific features of mis-
sense variants in protein structures, our analysis could also
explain contrasting claims found in the literature. In a recent
review (20), both disease-causing and benign missense varia-
tions were reported to be predominantly located in helices and
coil regions and less frequently in β-strands, whereas β-strands
had been found to be more intolerant to mutations than α-
helices in separate studies (61, 67). Our analysis of 1, 330 genes
did identify β-strands/sheets to be intolerant to substitution in
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Fig. 7. Protein features of missense variations on 3D structure provide intuitive insights into the effect of amino acid substitutions. (A) Structure (PDB ID
code 2ING, chain: X) of BRCA1 with pathogenic (red) and population (blue) variations mapped, with an additional phenylalanine (Phe/F) at position 1704
(F1704) highlighted in pink for further analysis in this overview. (B) The 3D feature annotations for F1704. (C) Comparison of features of F1704 with protein
class-specific 3D features associated to pathogenic and population variants (BRCA1 is annotated as a nucleic acid binding protein). A feature is highlighted
in red if it matches a pathogenic variant-associated feature, or in blue if it matches a population variant-associated feature. In this example, F1704 possesses
six pathogenic (3DFPATH) and zero population (3DFPOP) variant-associated 3D features. Thus, for F1704, P3DFiNucleic acid binding is equal to 6 – 0 = 6 (a positive
P3DFi value represents a 3D mutational hotspot).

general (Fig. 2), in agreement with the latter. Importantly, how-
ever, we also identified five protein classes (cell junction proteins,
kinases, nucleic acid binding proteins, transcription factors, and
transporters) that show enrichment of pathogenic variants in α-
helical residues, in contrast to the general trend (Fig. 3A and
SI Appendix, Fig. S3D). Interestingly, these residues tend to be
relatively buried, with a probability of 46% (cell junction pro-
teins) to 74% (kinases) of having a lower RSA than the average
pathogenic variant-associated helical amino acid in the whole
DAGS1330 set. These results show that characteristic features
of 3D mutational hotspots vary based on the gene and variant
set used for the analysis, which may be the reason underlying
the diverging findings in the literature. Our study employing
a unified dataset and workflow could detect such variability
through the combined analysis over all genes and the individ-
ual analysis of specific functional protein classes (SI Appendix,
Table S1 and Dataset S3). In particular, it is important to stress
that we measured the statistical burden of pathogenic varia-
tions on a feature compared to the population variations with
a two-sided Fisher’s exact test (see Materials and Methods). This
method effectively reduces the possibility of obtaining a trivial
result due to biased statistics of features in the proteins of a
given functional class (e.g., findingα-helical residues significantly
associated with pathogenic variants in predominantly α-helical

proteins; SI Appendix, Fig. S11), and should therefore return only
meaningful associations. For further verification of our protein
class-specific results, we computed the “relative risk” (RR) (68)
of a mutation to be pathogenic given that the altered residue
has a 3D feature (for all 40 features) across the full dataset
(DAGS1330 set) and for individual protein classes: Notably, the
RR values were strongly correlated (Pearson r2 = 94%) with
the OR (Fig. 3), indicating that the ORs effectively approximate
the RRs for our study.

The validity of this approach in yielding significant results
is supported by the performance of a 3D feature-based index
(P3DFi) that we generated in this study for each amino acid to
quantify the relative effect of their substitution. For the same
protein, P3DFi can be calculated considering the “general” char-
acteristic 3D features of pathogenic and population variants
found by analyzing all genes together (P3DFiDAGS1330) and also
using the function-specific 3D features (P3DFiProtein class) (see
Materials and Methods). Germline mutations in the phosphatase
and tensin homolog (PTEN) protein have been shown to be asso-
ciated with diverse clinical phenotypes, including cancers and
autism spectrum disorder, due to the structural defects caused by
the mutations (37, 51, 69). By comparing P3DFi values with the
effect of PTEN variants on the protein’s lipid phosphatase activ-
ity in vivo as determined by saturation mutagenesis experiments
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(51), we noticed that the P3DFiPhosphatase is 55% more corre-
lated (Pearson r2) with the mutational screen readouts than the
P3DFiDAGS1330 (Fig. 6). To further validate our findings, we have
also assessed the predictive value of P3DFi by evaluating the per-
formance of a random forest classifier. When the same classifier
is trained with P3DFiProtein class in conjunction with other state-
of-the-art variant pathogenicity prediction scores [from SIFT
(11), PolyPhen2 (9), and CADD (48)], it can more accurately
classify pathogenic and benign variants (8% higher MCC value;
Table 1) than the model built using P3DFiDAGS1330 and the
existing scores.

As is the case for functional classes, the characteristic fea-
tures of 3D mutational hotspots can vary across different protein
structural classes or folds (α–β barrel, β-propeller, α-horseshoe,
etc.). Functional sites and regions have already been shown to
be enriched with pathogenic variations (Fig. 2 and SI Appendix,
Fig. S1B and refs. 64 and 70), and the 3D configuration of
these sites/regions may well differ across different structural
classes (71). Future investigations in this direction can unveil
structure-specific insights into the impact of missense variations
in different folds. It is important to note that we characterized
the positions of missense variations on experimentally solved
human protein structures as available in the PDB (8), which
covers only one-third of the human proteome. For those cases
where the gene is known but the corresponding protein struc-
ture has not yet been solved, inclusion of homology models
could increase the power of statistical analyses similar to the
one performed here. However, to ensure a reliable characteri-
zation of the 3D mutational hotspots, we employed only genes
for which both pathogenic and population variations were map-
pable on experimentally solved structures, which still resulted in
by far the largest study of this kind. It is also worth mention-
ing that, out of the total variants of the 1, 330 disease-associated
genes, we could map a higher proportion of pathogenic vari-
ants (61% of 63, 606) onto protein structures compared to the
population variants (33% of 496, 869), which could plausibly be
due to a bias of the relevant scientific community toward solving
mainly the structure of the functionally relevant part of pro-
teins (60) for structure-based target analysis and drug discovery
purposes.

To summarize, in this study, we went beyond widely applied
sequence- and conservation-based characterization of missense
variants, and quantitatively determined the 3D protein features
of amino acids affected by pathogenic or population variants
from 1, 330 disease-associated genes. Furthermore, we identified
specific features that are important for the function of a certain
protein class, adding one important dimension to our under-
standing of the functional effect of missense variations. We made
the outcome of this study (precomputed P3DFiDAGS1330 and
P3DFiProtein class values for every possible amino acid exchange in
proteins encoded by 1, 330 disease-associated genes, along with
the explicit listing of the 3D features of the altered site as the
rationale for the index) available through a dedicated web server
(MISCAST; http://miscast.broadinstitute.org/). By bringing the
genetic variation into the 3D protein context, we believe that our
study outcome can serve as a powerful resource for the transla-
tion of personal genomics to personal diagnostics and precision
medicine: It can help to delineate variant pathogenicity, select
candidate variants for functional assays, and aid in generating
hypothesis for drug development.

Materials and Methods
Detailed information is provided in SI Appendix.

DAGS1330 and Validation Dataset Preparation. Protein structures solved in
human (in full or chimeric) were collected from the PDB (8). Protein-coding
single nucleotide variants in the general population (hereafter referred to
as “population” variant/variation) were obtained from gnomAD database,

public release 2.0.2 (7). In addition, the “pathogenic” missense variations
were collected from two sources: the ClinVar database (6), February 2018
release, and HGMD® professional release 2018.4 (5) (SI Appendix, Table S1).
For 1, 330 genes, we could map 164, 915 population and 32, 923 pathogenic
variations onto 14, 270 human protein structures (Fig. 1, step 1). This dataset
is referred to as DAGS1330 (Dataset S1) and was used for the statistical
analysis.

An additional validation set of pathogenic (n = 17, 983) and benign
(n = 4, 712) missense variations was collected from ClinVar, February 2019
release, and HGMD® professional release 2019.2. All variants present in the
DAGS1330 set were removed (SI Appendix). Further, high-throughput muta-
genesis readouts, classifying loss-of-function variations from neutral ones in
BRCA1 and PTEN, were collected from literature (50, 51).

Protein Feature Mining and Annotation. The amino acid residues were anno-
tated with 40 protein features (a combination of structural, physicochemi-
cal, and functional features) from seven main feature categories (Fig. 1, step
2; see detailed definitions in SI Appendix). The secondary structure and sol-
vent accessible area of amino acid residues were calculated using the DSSP
(dictionary of protein secondary structure) program (40). Protein–protein
interactions, PTMs, and functional features were obtained from the PDBsum
(41), PhosphoSitePlus (42), and UniProt (43) databases, respectively.

Protein Class Annotation. The protein class information for the genes was
aggregated from 1) PANTHER (Protein Analysis Through Evolutionary Rela-
tionships) database (44), 2) Ensemble family description (version 93), and 3)
molecular function and/or biological process annotation available in UniProt
(Fig. 1, step 3). Note that a protein may have multiple functions and so can
be assigned into multiple classes (see the full list in Dataset S2).

Statistical Analysis. We used two-sided Fisher’s exact test of association to
quantify the burden of pathogenic or population variations for each fea-
ture (Fig. 1, step 4). An estimate of enrichment or burden (OR), 95% CI, and
the p value (p) showing the significance of the observed burden or associ-
ation were obtained from the test output. All p values were corrected to
generate “q” as p × 1,000 (total number of tests). Therefore, a 3D feature
is considered to be a characteristic feature of pathogenic variants when the
test outputs OR > 1 and q < 0.05. In contrast, when the test outputs OR <

1 and q < 0.05, the feature is referred to as a characteristic 3D feature of
population variants.

Computation of P3DFi per Amino Acid. For each amino acid residue of the
proteins encoded by the 1, 330 disease-associated genes, we generated the
3D feature annotations (Fig. 7B) and counted the number of pathogenic
and population variant-associated 3D features of the amino acid, denoted
as 3DFPATH and 3DFPOP, respectively. Thereafter, the P3DFi per amino acid is
computed as 3DFPATH minus 3DFPOP (P3DFi 0 thus indicates a 3D mutational
hotspot; Fig. 7C). Note that we identified the pathogenic and popula-
tion variant-associated 3D features for all 1, 330 genes analyzed together
as one pool (Fig. 2) and also for 24 different protein classes (Fig. 3A).
Therefore, P3DFi can be derived using the full DAGS1330-based 3D fea-
tures (P3DFiDAGS1330) and also using protein class-specific (P3DFiProtein class)
3D features.

Development of Ensemble Model. All models were developed using the
classical random forest method, which was implemented using the scikit-
learn machine learning library for Python. The model parameters were
set to number of estimators or decision trees = 2, 000, quality mea-
sure = “gini,” and the maximum depth of the trees = 10. Both the
training and test datasets, along with the prediction scores (>0.5: dele-
terious/pathogenic, ≤0.5: neutral/benign), are available in Datasets S4
and S5.

Data Availability. All data that are used and generated in this study
are made available through Datasets S1–S5 and the MISCAST webserver
(http://miscast.broadinstitute.org/).

ACKNOWLEDGMENTS. We acknowledge Costin Leu, Giulio Genovese, and
Jon Bloom for insightful discussions that motivated some of the analy-
sis presented in this manuscript. This work was supported by the Stanley
Center for Psychiatric Research. P.M. received research grants from Fonds
National de la Recherche de Luxembourg: the National Centre for Excel-
lence in Research on Parkinson’s Disease (NCER-PD, Grant FNR11264123)
and the Mitochondrial Risk factors in Parkinson disease (MiRisk-PD, Grant
C17/BM/11676395).

28210 | www.pnas.org/cgi/doi/10.1073/pnas.2002660117 Iqbal et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
27

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
http://miscast.broadinstitute.org/
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2002660117/-/DCSupplemental
http://miscast.broadinstitute.org/
https://www.pnas.org/cgi/doi/10.1073/pnas.2002660117


www.manaraa.com

G
EN

ET
IC

S

1. G. Glusman, Clinical applications of sequencing take center stage. Genome Biol. 14,
303 (2013).

2. S. A. Dugger, A. Platt, D. B. Goldstein, Drug development in the era of precision
medicine. Nat. Rev. Drug Discov. 17, 183–196 (2018).

3. M. Lek et al., Analysis of protein-coding genetic variation in 60,706 humans. Nature
536, 285–291 (2016).

4. V. A. McKusick, Mendelian inheritance in man and its online version, OMIM. Am. J.
Hum. Genet. 80, 588–604 (2007).

5. P. D. Stenson et al., The human gene mutation database: Building a comprehen-
sive mutation repository for clinical and molecular genetics, diagnostic testing and
personalized genomic medicine. Hum. Genet. 133, 1–9 (2014).

6. M. J. Landrum et al., ClinVar: Improving access to variant interpretations and
supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).

7. K. J. Karczewski et al., The mutational constraint spectrum quantified from variation
in 141,456 humans. Nature 581, 434–443 (2020).

8. H. M. Berman, P. E. Bourne, J. Westbrook, C. Zardecki, “The protein data bank” in
Protein Structure, D. Chasman, Ed. (CRC, 2003), pp. 394–410.

9. I. A. Adzhubei et al., A method and server for predicting damaging missense
mutations. Nat. Methods 7, 248–249 (2010).

10. M. Kircher et al., A general framework for estimating the relative pathogenicity of
human genetic variants. Nat. Genet. 46, 310–315 (2014).

11. P. C. Ng, S. Henikoff, SIFT: Predicting amino acid changes that affect protein function.
Nucleic Acids Res. 31, 3812–3814 (2003).

12. E. H. Baugh et al., Robust classification of protein variation using structural
modelling and large-scale data integration. Nucleic Acids Res. 44, 2501–2513
(2016).

13. L. Sundaram et al., Predicting the clinical impact of human mutation with deep neural
networks. Nat. Genet. 50, 1161–1170 (2018).

14. V. Pejaver, S. D. Mooney, P. Radivojac, Missense variant pathogenicity predictors gen-
eralize well across a range of function-specific prediction challenges. Hum. Mutat. 38,
1092–1108 (2017).

15. A. David, M. J. Sternberg, The contribution of missense mutations in core and rim
residues of protein–protein interfaces to human disease. J. Mol. Biol. 427, 2886–2898
(2015).

16. H. Nishi, J. Nakata, K. Kinoshita, Distribution of single-nucleotide variants on protein–
protein interaction sites and its relationship with minor allele frequency. Protein Sci.
25, 316–321 (2016).

17. N. Sahni et al., Widespread macromolecular interaction perturbations in human
genetic disorders. Cell 161, 647–660 (2015).

18. S. Stefl, H. Nishi, M. Petukh, A. R. Panchenko, E. Alexov, Molecular mechanisms of
disease-causing missense mutations. J. Mol. Biol. 425, 3919–3936 (2013).

19. M. Petukh, T. G. Kucukkal, E. Alexov, On human disease-causing amino acid variants:
Statistical study of sequence and structural patterns. Hum. Mutat. 36, 524–534 (2015).

20. T. G. Kucukkal, M. Petukh, L. Li, E. Alexov, Structural and physico-chemical effects
of disease and non-disease nsSNPs on proteins. Curr. Opin. Struct. Biol. 32, 18–24
(2015).

21. M. Gao, H. Zhou, J. Skolnick, Insights into disease-associated mutations in the human
proteome through protein structural analysis. Structure 23, 1362–1369 (2015).

22. C. L. Araya et al., Identification of significantly mutated regions across cancer types
highlights a rich landscape of functional molecular alterations. Nat. Genet. 48, 117–
125 (2016).

23. A. Kamburov et al., Comprehensive assessment of cancer missense mutation
clustering in protein structures. Proc. Natl. Acad. Sci. U.S.A 112, E5486–E5495 (2015).

24. R. M. Sivley, X. Dou, J. Meiler, W. S. Bush, J. A. Capra, Comprehensive analysis of con-
straint on the spatial distribution of missense variants in human protein structures.
Am. J. Hum. Genet. 102, 415–426 (2018).

25. M. J. Meyer et al., Mutation3D: Cancer gene prediction through atomic clustering of
coding variants in the structural proteome. Hum. Mutat. 37, 447–456 (2016).

26. C. Tokheim et al., Exome-scale discovery of hotspot mutation regions in human cancer
using 3D protein structure. Cancer Res. 76, 3719–3731 (2016).

27. S. Ittisoponpisan et al., Can predicted protein 3D structures provide reliable insights
into whether missense variants are disease associated? J. Mol. Biol. 431, 2197–2212
(2019).

28. C. M. Yates, I. Filippis, L. A. Kelley, M. J. Sternberg, Suspect: Enhanced prediction of
single amino acid variant (SAV) phenotype using network features. J. Mol. Biol. 426,
2692–2701 (2014).

29. R. A. Laskowski, J. D. Stephenson, I. Sillitoe, C. A. Orengo, J. M. Thornton, VarSite:
Disease variants and protein structure. Protein Sci. 29, 111–119 (2020).

30. S. Richards et al., Standards and guidelines for the interpretation of sequence vari-
ants: A joint consensus recommendation of the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–423
(2015).

31. A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis
and Protein Folding (Macmillan, 1999).

32. C. L. Worth, S. Gong, T. L. Blundell, Structural and functional constraints in the
evolution of protein families. Nat. Rev. Mol. Cell Biol. 10, 709–720 (2009).

33. S. G. Williams, S. C. Lovell, The effect of sequence evolution on protein structural
divergence. Mol. Biol. Evol. 26, 1055–1065 (2009).

34. S. J. Sanders et al., Progress in understanding and treating SCN2A-mediated disorders.
Trends Neurosci. 41, 442–456 (2018).

35. J. Spillane, D. Kullmann, M. Hanna, Genetic neurological channelopathies: Molecular
genetics and clinical phenotypes. J. Neurol. Neurosurg. Psychiatry 87, 37–48 (2016).

36. H. O. Heyne et al., Predicting functional effects of missense variants in voltage-gated
sodium and calcium channels. Sci. Transl. Med. 12, eaay6848 (2020).

37. I. N. Smith, S. Thacker, R. Jaini, C. Eng, Dynamics and structural stability effects of
germline PTEN mutations associated with cancer versus autism phenotypes. J. Biomol.
Struct. Dyn. 37, 1766–1782 (2019).

38. H. E. Olson et al., Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder: Clinical
review. Pediatr. Neurol. 97, 18–25 (2019).

39. S. Velankar et al., SIFTS: Structure integration with function, taxonomy and sequences
resource. Nucleic Acids Res. 41, D483–D489 (2012).

40. W. Kabsch, C. Sander, Dictionary of protein secondary structure: Pattern recognition
of hydrogen-bonded and geometrical features. Biopolym. Orig. Res. on Biomol. 22,
2577–2637 (1983).
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